

Asynchronously Parallel Optimization Solver for Finding Multiple Minima

Jeffrey Larson Stefan M. Wild

Argonne National Laboratory

August 10, 2016

Problem setup

Want to find distinct, high-quality minima for the problem

when \mathcal{D} is compact, c concurrent evaluations of f are possible, and relatively little is known about f a priori.

Problem setup

Want to find distinct, high-quality minima for the problem

when \mathcal{D} is compact, c concurrent evaluations of f are possible, and relatively little is known about f a priori.

- Derivatives of f may or may not be available
- c is fairly small
- Evaluating f is expensive
- ▶ High-quality can be measured by more than the objective

Motivation

Motivation

Grid over the domain

(easily parallelizable)

► Grid over the domain (easily parallelizable)

► Random sampling (easily parallelizable)

► Grid over the domain (easily parallelizable)

► Random sampling (easily parallelizable)

► Evolutionary Algorithms (many are parallelizable)

Grid over the domain

(easily parallelizable)

Random sampling

(easily parallelizable)

- Evolutionary Algorithms
 - Genetic Algorithm
 - Simulated Annealing
 - Particle Swarm
 - Ant Colony Optimization
 - Bee Colony Optimization
 - Cuckoo Search
 - Bacterial Colony Optimization
 - Grey Wolf Optimization
 - Firefly Optimization
 - Harmony Search
 - River Formation Dynamics

(many are parallelizable)

4 of 19

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ► finite domain *D*

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - finite domain \mathcal{D}
- Or possibly wait a long time (or forever)

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
 - concurrent evaluations of f
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

An algorithm must trade-off between "refinement" and "exploration".

An algorithm must trade-off between "refinement" and "exploration".

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

An algorithm must trade-off between "refinement" and "exploration".

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

An algorithm must trade-off between "refinement" and "exploration".

- lacktriangle Explore by random sampling from the domain ${\cal D}$
- ▶ Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

- + Get to use (more developed) local optimization routines.
 - least-squares objectives, nonsmooth objectives, (un)relaxable constraints, and more
- + Increased opportunity for parallelism
 - objective, local solver, and global solver
- Can require many sequential evaluations for the local solver

Where to start?

MLSL:

 $\hat{x} \in \mathcal{S}_k$

Where to start?

$$\hat{x} \in \mathcal{S}_k$$

- (S2) $\nexists x \in S_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

Where to start?

MLSL: (S2)-(S4)

$$\hat{x} \in \mathcal{S}_k$$

- (S1) $\nexists x \in \mathcal{L}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

APOSMM: (S1)–(S4), (L1)–(L6)

$$\hat{x} \in \mathcal{L}_k$$

- (L1) $\nexists x \in \mathcal{L}_k$ $[\|\hat{x} - x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L3) \hat{x} has not started a local optimization run
- (L4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima
- (L5) \hat{x} is not in an active local optimization run and has not been ruled stationary
- (L6) $\exists r_k$ -descent path in \mathcal{H}_k from some $x \in \mathcal{S}_k$ satisfying (S2-S4) to \hat{x}

Properties of the local optimization method

Necessary:

- ► Honors a starting point
- Honors bound constraints

Properties of the local optimization method

Necessary:

- Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Properties of the local optimization method

Necessary:

- Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:

- Can return multiple points of interest
- Reports solution quality/confidence at every iteration
- Can avoid certain regions in the domain
- Uses a history of past evaluations of f
- Uses additional points mid-run

Exploiting Structure

Nonsmooth, composite optimization

$$\underset{x}{\text{minimize }} f(x) = h(F(x))$$

where ∇F is unavailable but ∂h is known

Least-squares minimization

$$\underset{x}{\text{minimize }} f(x) = \sum_{i} (F_{i}(x) - T_{i})^{2}$$

Theoretical results

- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between minima is bounded away from zero.
- $ightharpoonup \mathcal{L}$ is strictly descent and converges to a minimum (not a stationary point).
- Each run has points evaluated often enough

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right) \frac{5\log|\mathcal{S}_k|}{|\mathcal{S}_k|}}$$

Theoretical results

- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between minima is bounded away from zero.
- $ightharpoonup \mathcal{L}$ is strictly descent and converges to a minimum (not a stationary point).
- Each run has points evaluated often enough

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right) \frac{5\log|\mathcal{S}_k|}{|\mathcal{S}_k|}}$$

Theorem

Each minima will almost surely be identified: either found in a finite number of evaluations or have a single local optimization run converging asymptotically to it.

Measuring Performance

```
GLODS Global & local optimization using direct search [Custódio, Madeira (JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy code [Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell (2009)], Initial sample size: 10n
```

GKLS problems [Gaviano et al., "Algorithm 829" (TOMS, 2003)]

- ▶ Smooth augmentation of a convex quadratic; n = 2, ..., 7
- ▶ 10 local minima in the unit cube with a unique global minimum
- ▶ 100 problems for each n; 5 replications; 2000(n+1) evaluations

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^*\in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The global minimum has been found at a level $\tau > 0$ after k evaluations if an algorithm it has found a point \hat{x} satisfying:

$$f(\hat{x}) - f_{(1)}^* \le (1 - \tau) \left(f(x_0) - f_{(1)}^* \right),$$

where x_0 is the starting point for problem p.

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The j best local minima have been found at a level $\tau > 0$ after k evaluations if:

$$\begin{aligned} \left| \left\{ x_{(1)}^*, \dots, x_{(\underline{j}-1)}^* \right\} \bigcap \left\{ x_{(i)}^* : \exists x \in \mathcal{H}_k \text{ with } \left\| x - x_{(i)}^* \right\| \le r_n(\tau) \right\} \right| = \underline{j} - 1 \\ & & & & \\ \left| \left\{ x_{(\underline{j})}^*, \dots, x_{(\overline{j})}^* \right\} \bigcap \left\{ x_{(i)}^* : \exists x \in \mathcal{H}_k \text{ with } \left\| x - x_{(i)}^* \right\| \le r_n(\tau) \right\} \right| \ge \underline{j} - \underline{j} + 1, \end{aligned}$$

where j and \bar{j} are the smallest and largest integers such that

$$f_{(\overline{j})}^* = f_{(j)}^* = f_{(\underline{j})}^*$$
 and where $r_n(\tau) = \sqrt[n]{rac{ au \operatorname{vol}(\mathcal{D})\Gamma(rac{n}{2}+1)}{\pi^{n/2}}}$.

Ability to Find Approximate Global Minimizer

- Makes rapid progress to f_G
- Outperforms other algorithms (even while demanding 14-fold concurrency)

$$\tau = 10^{-2}$$
 $f(x) - f_G \le (1 - \tau) (f(x^0) - f_G)$

Ability to Find Approximate Global Minimizer

- Makes rapid progress to f_G
- Outperforms other algorithms (even while demanding 14-fold concurrency)

$$\tau = 10^{-5} f(x) - f_G \le (1 - \tau) (f(x^0) - f_G)$$

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau=10^{-5}$, j=2 minimizers

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau = 10^{-3}$, j = 7 minimizers

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau = 10^{-2}$, j = 3 minimizers

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau = 10^{-4}$, j = 3 minimizers

(Tolerance, # Minimizers) Comparison With Random Sampling

Area under data profile: POSMM (L), RS (R)

(Tolerance, # Minimizers) Comparison With Random Sampling

Percent difference between POSMM and RS areas

APOSMM has clear advantages as tolerances tighten

Closing Remarks

► Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.

Closing Remarks

- Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.
- ► Can write/use algorithms that exploit problem structure

Closing Remarks

- Concurrent function evaluations can locate multiple minima while efficiently finding a global minimum.
- Can write/use algorithms that exploit problem structure

Current work:

- ► Finding (or designing) the best local solver for our framework
- Best way to process the queue?

```
www.mcs.anl.gov/~jlarson/APOSMM
    APOSMM@lists.mcs.anl.gov
    jmlarson@anl.gov
```